Laser systems specialist LPKF Laser & Electronics, based in Hannover, Germany has added a foundry service for thin glass substrates to its product portfolio. The company recently introduced the Laser-Induced Deep Etching technology, or LIDE for short, a process for the precise and highly efficient manufacturing of through-glass vias (TGV) and other deep micro features in thin glass substrates. The LIDE process is able to overcome past limitations in glass drilling and micro machining as it combines very high productivity and low manufacturing cost with the superior quality of a direct data process, forgoing masks or photo processing.
With the introduction of its new independent foundry service, LPKF is hoping to make the LIDE technology available on a much wider scale, covering both prototyping and experimental applications as well as scalable mass production capacity. The service is aimed at the manufacturing of glass substrates for advanced IC and MEMS packaging as well as micro-machining of spacer wafers,microfluidics and other specialty glass applications. LPKF’s new foundry service is located at its corporate headquarters and will operate under the company’s Vitrion brand name.
Established in 1976, LPKF Laser & Electronics manufactures laser systems used in circuit board prototyping, microelectronics fabrication, solar panel scribers, laser plastic welding systems and recently added a foundry service for thin glass substrates used in electronics packaging. LPKF’sworldwide headquarters is located in Hannover, Germany and its North American headquarters resides in Portland, OR.
Over the past 50 years, Nichia has demonstrated its commitment to improving the overall performance…
To fund the acquisition and ongoing operation of the production facility, BluGlass has secured A$3.4…
New CAS 140D IR spectroradiometer with improved optical and electronic components offer the user higher…
SSC boasts world's only LED and LD technology for vehicles using all wavelengths of light…
E-cars do not have a classic radiator grille, so the front of the vehicle…
“We welcome the further alignment of ANSI C137.4-2021 and D4i, which is expected to lead…