New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.
(Image: EPJ B)
Polymer LEDs (PLEDs) are devices containing single layers of luminescent polymers, sandwiched between two metal electrodes. They produce light as the metal layers inject electrons and holes into the polymer, creating distortions which can combine to form two different types of electron-hole pair: either light-emitting ‘singlets,’ or a non-emitting ‘triplets.’ Previous theories have suggested that the ratio between these two types should be around 1:3, which would produce a light emission efficiency of 25%.
However, subsequent experiments showed that the real value can be as high as 83%. In new research published in EPJ B, physicists in China, led by Yadong Wang at Hebei North University, found that this higher-than-expected efficiency can be reached through interactions between triplet excitons, and impurities embedded in the polymer.
Owing to their scientific and commercial value, PLEDs are becoming an increasingly popular field of research. The discoveries of Wang’s team could now lead to more widespread applications of the devices in the future.
Within PLED polymer layers, excitons are known to be produced through the recombination of ‘polarons’ – distortions in electrical charges which form and disappear as electrons move through solid materials. However, other mechanisms must also be involved to explain why their luminescence efficiencies are so much higher than previous theories predicted. One proposal suggests that their electrical and optical properties of PLEDs are strongly influenced by unpaired electrons trapped within molecular impurities.
Wang and colleagues explored this idea through molecular dynamics simulations, which allowed them to recreate collisions between a non-emitting triplet exciton in a polymer chain, and an unpaired impurity electron. Their calculations revealed that light-emitting singlet excitons are among the main products of this reaction; with their overall proportion varying with the size of the impurity, and its degree of coupling with the polymer chain. For the first time, the result offers conclusive evidence that impurities can significantly boost the efficiency of PLEDs, and offers new clues about the molecular mechanisms involved.
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.
Over the past 50 years, Nichia has demonstrated its commitment to improving the overall performance…
To fund the acquisition and ongoing operation of the production facility, BluGlass has secured A$3.4…
New CAS 140D IR spectroradiometer with improved optical and electronic components offer the user higher…
SSC boasts world's only LED and LD technology for vehicles using all wavelengths of light…
E-cars do not have a classic radiator grille, so the front of the vehicle…
“We welcome the further alignment of ANSI C137.4-2021 and D4i, which is expected to lead…