Categories: Blog

CEA-Leti Researchers Break Throughput Record for LiFi Communications Using Single GaN Blue Micro-Light-Emitting Diode — LED professional


VLC, commonly called LiFi (short for “light fidelity”), is an emerging wireless communication system that offers an alternative or a complementary technology to radio frequency (RF) systems such as WiFi and 5G. It is considered to be a promising technology for security-related applications because light propagation can be confined to a room with no information leakage, as opposed to WiFi communication, which penetrates walls. LiFi also holds promise for ultra-highspeed data transmission in environments where RF emissions are controlled, like hospitals, schools, and airplanes.

Single microLED communications offer an ultra-high data-transmission rate for a variety of opportunities for new applications. These include industrial wireless high-speed links in demanding environments such as assembly lines and data centers, and contact-less connectors, or chip-to-chip communication. But their weak optical power limits their applications to short-range communications. In contrast, matrices of thousands of microLEDs contain higher optical powers than open mid- and long-range applications. However, preserving the bandwidth of each microLED within a matrix requires that each signal has to be brought as close as possible to the micro-optical source.

Exciting Potential for Mass-Market Applications

CEA-Leti’s expertise in the microLED epitaxial process produces microLEDs as small as 10 microns, which is among the smallest in the world. The smaller the emissive area of the LED, the higher the communication bandwidth – 1.8 GHz in the institute’s single-blue microLED project. The team also produced an advanced multi-carrier modulation combined with digital signal processing. This high-spectrum-efficiency waveform was transmitted by the single LED and was received on a high-speed photodetector and demodulated using a direct sampling oscilloscope.

“This technology has exciting potential for mass-market applications,” said Benoit Miscopein, CEA-Leti research scientist. “Multi-LED systems could replace WiFi, but wide-scale adoption will require a standardization process to ensure the systems’ interoperability between different manufacturers. The Light Communications Alliance was created in 2019 to encourage the industry to implement this standardization.”

In addition to a stand-alone WiFi-like standard, the possibility to include this new technology as a component carrier in the downlink of 5G-NR, a radio-access technology for 5G mobile considerations, is also under investigation to bring a large additional license-free bandwidth.

“This may be feasible because CEA-Leti’s LiFi physical layer relies on the same concepts as WiFi and 5G technologies,” said Miscopein. “Matrices of thousands of microLEDs could also open the way to mid- to long-range applications, such as indoor wireless multiple access.”

Preserving the bandwidth of each microLED within a matrix requires that each signal is generated as close as possible to the micro-optical source.

“To meet this challenge, we expect to hybridize the microLED matrix onto another matrix of CMOS drivers: one simple CMOS driver will pilot one microLED,” Miscopein said. “This will also enable the additional feature of piloting each microLED pixel independently, and that allows new types of digital-to-optical waveforms that could eliminate the need for digital-to-analog converters commonly used in the conventional ‘analogue’ implementations of LiFi.”

While the Light Communications Alliance will promote interoperability between different manufacturers’ LiFi systems, CEA-Leti will continue its research in two areas:
•    A better understanding of the electrical behavior of single LEDs in high
     frequency regimes and the link between bandwidth and electromigration
     patterns, and
•    Techniques to improve the range and/or increase the data rate using
     multi-LED emissive devices. This requires adapting the waveform
     generation as well as a CMOS interposer to drive the matrix on a pixel basis.

Follow us on www.leti-cea.com

About CEA-Leti:

Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a member of the Carnot Institutes network. – www.leti-cea.com and @CEA_Leti



Source link

admin

Share
Published by
admin

Recent Posts

High TLCI Illumination for Accurate Color in Telework & Indoor Video Recording — LED professional

Over the past 50 years, Nichia has demonstrated its commitment to improving the overall performance…

3 years ago

Blueglass to Aquire US Laser Diode Facility — LED professional

To fund the acquisition and ongoing operation of the production facility, BluGlass has secured A$3.4…

3 years ago

High-performance for wavelengths in infrared

New CAS 140D IR spectroradiometer with improved optical and electronic components offer the user higher…

3 years ago

Seoul Semiconductor Relocates Headquarters of Automobile Division to Germany — LED professional

SSC boasts world's only LED and LD technology for vehicles using all wavelengths of light…

3 years ago

Panel technology: HELLA develops new design concepts for the vehicle front end

  ​E-cars do not have a classic radiator grille, so the front of the vehicle…

3 years ago

Data Reporting, Diagnostics, Sensors and NLCs Added to ANSI C137.4-2021 Standard for Digital Lighting Control — LED professional

“We welcome the further alignment of ANSI C137.4-2021 and D4i, which is expected to lead…

3 years ago